MODEL ANSWER WINTER- 18 EXAMINATION

Subject Title: Basic Electronics (BEL)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
Q. 1		Attempt any FIVE :	10-Total Marks
	a)	Draw the symbol of photodiode.	2M
	Ans:		Correct symbol -2M
	b)	Define Transistor. State its type.	2M
	Ans:	Transistors are active electronic components made of semiconducting materials, which can amplify the electric signals by the application of a small input signal. Types of transistors: 1. Unipolar Junction Transistors 2. Bipolar Junction Transistors	Definition 1M; Types - 1M
	c)	Define load and line regulation.	2M
	Ans:	Load regulation is the ability of the power supply to maintain its specified output voltage given changes in the load. Line regulation is the ability of the power supply to maintain its specified output voltage over changes in the input line voltage.	Each definition 1M

(ISO/IEC - 27001-2013 Certified)

d)	State application of FET.	2M
Ans:	(NOTE : Any other relevant Application mark shall be given) Applications of FET : i. As input amplifiers in oscilloscopes, electronic voltmeters and other measuring and testing equipment because high input impedance reduces loading effect to the minimum. ii. Constant current source. They are used to build RF amplifiers in FM tuners and other communication circuits. Because of low noise. iv. FETs are used in mixer circuits of FM and TV receivers as it reduces inter modulation distortion. v. Used as Analogue switch. vi. As a Voltage Variable Resistor (VVR) in operational amplifiers.	Any two applications (1M each)
e)	Sketch energy band diagram of semiconductor.	2M
Ans:	Energy band diagram for \mathbf{N} type semiconductor: Energy band diagram for P type semiconductor:	Any one correct diagram 2M

	f)	State the need of DC regulated power supply.			2M
	Ans:	Need of DC regulated pow 1. To convert unregulated 2. To convert fluctuating m	supply : into constant DC. supply into regulated cons		Any one relevant need $-2 \mathrm{M}$
	g)	Name the components of	owing symbol: (i) (ii)	D	2M
	Ans:	(i) N-channel Enhancemen (ii) N-channel Depletion typ	pe MOSFET MOSFET		Each correct answer -1M
Q. 2		Attempt any THREE of th	following :		$\begin{aligned} & \text { 12-Total } \\ & \text { Marks } \end{aligned}$
	a)	Compare PN junction di	Zener diode. (four poi		4M
	Ans:	Parameter	PN junction diode	Zener diode	Each point -
		Symbol			1M
		Direction of Conduction Reverse breakdown	Conducts only in one direction It has no sharp reverse breakdown	Conducts in both directions It has quite sharp reverse breakdown	
		Application	Used in rectification	Used in regulation	
		Resistance in reverse biased condition	Very high	Very small	
		Characteristics	 reverse current		

\begin{tabular}{|c|c|c|}
\hline b) \& Explain with a neat circuit diagram of voltage divider bias method for biasing a transistor. \& 4M \\
\hline Ans: \& \begin{tabular}{l}
The voltage divider is formed using external resistors \(R_{1}\) and \(R_{2}\). The voltage across \(R_{2}\) forward biases the emitter junction. By proper selection of resistors \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\), the operating point of the transistor can be made independent of \(\beta\). In this circuit, the voltage divider holds the base voltage fixed independent of base current provided the divider current is large compared to the base current. \\
The voltage at transistor base, \(\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \mathrm{X} \quad \frac{R_{2}}{R_{1}+R_{2}}\)
\[
\text { Neglecting } \mathrm{V}_{\mathrm{B}} \text {, The emitter current }=\mathrm{I}_{\mathrm{E}}=\frac{V_{E}}{R_{E}}
\]
\[
\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{C}}-\mathrm{I}_{\mathrm{E}} \cdot \mathrm{R}_{\mathrm{E}}
\]
\end{tabular} \& \begin{tabular}{l}
Explanation - 2M \\
Diagram - \\
2M
\end{tabular} \\
\hline c) \& Draw the block diagram of DC power supply. Explain the function of each block. \& 4M \\
\hline Ans: \& \begin{tabular}{l}
Transformer: It reduces the amplitude of ac voltage to the desired level and applies it to a rectifier circuit. \\
Rectifier : This circuit converts the voltage at the secondary of the transformer into a pulsating dc voltage. \\
Filter: This circuit reduces the ripple content in the pulsating dc, producing unregulated dc voltage. \\
Regulator: This circuit converts the unregulated dc voltage into regulated constant dc voltage.
\end{tabular} \& \begin{tabular}{l}
Diagram - \\
2M \\
Functions - \\
2M
\end{tabular} \\
\hline d) \& Explain the concept of DC load line and oprating point. \& 4M \\
\hline Ans: \& \begin{tabular}{l}
DC load line: The straight line drawn on the characteristics of a BJT amplifier which give the DC values of collector current Ic and collector to emitter voltage \(\mathrm{V}_{\mathrm{CE}}\) corresponding to zero signal i.e. DC conditions is called DC load line. \\
To plot IC(MAX), \(\mathrm{V}_{\text {CE (MAX) }}\) on output characteristics: \\
Get \(V_{\text {CE (MAX) }}\) by putting \(\mathrm{I}_{\mathrm{c}=0}\)
\[
\begin{gathered}
\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{c}} \mathrm{R}_{\mathrm{c}} \\
\mathrm{~V}_{\mathrm{CE}}(\mathrm{MAX})=\mathrm{V}_{\mathrm{CC}} \quad \text { since } \mathrm{I}_{\mathrm{c}}=0
\end{gathered}
\] \\
Get \(I_{\text {(Max) }}\) by putting \(\mathrm{V}_{\mathrm{CE}}=0\) \\
\(\mathrm{IC}_{\text {(MAX }}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{C}}}\)
\end{tabular} \& 1 M

2 M

\hline
\end{tabular}

		 Operating point or Q- point: The fixed levels of certain currents and voltages in a transistor in active region defines the operating point on the DC load line. For normal operation of the transistor, the Q-point is to be selected at the center of the load line.	1M
Q. 3		Attempt any THREE of the following:	12-Total Marks
	a)	An AC supply of 230 V is applied to HWR through a transformer with turns ratio 10:1. Find Average DC output, Voltage current and PIV of diode, RMS value of voltage and current.	4M
	Ans:	$\text { Vrms }=230 \mathrm{~V}, \mathrm{np} / \mathrm{ns}=10 / 1$ Max primary voltage is $\begin{aligned} & \mathrm{Vp}==\sqrt{2} * \mathrm{Vrms} \\ &=\sqrt{2} * 230 \\ &=325.22 \mathrm{Volt} \end{aligned}$ The max secondary voltage is $\mathrm{Vm}=\mathrm{ns} / \mathrm{np} * \mathrm{Vp}=$ $\begin{aligned} & =1 / 10 * 325.22 \\ & =\mathbf{3 2 . 5 2 V} \end{aligned}$ $\begin{aligned} \mathrm{V} \text { average }=\mathrm{Vdc} & =\mathrm{Vm} / \Pi \\ & =32.5 / 3.14 \\ & =\mathbf{1 0 . 3 5 V} \end{aligned}$ $\begin{aligned} & \text { PIV }=\mathrm{Vm}=32.52 \mathrm{~V} \\ & \begin{aligned} \text { Vrms } & =\mathrm{Vm} / 2 \\ & =32.52 / 2 \\ & =\mathbf{1 6 . 2 5 V} \end{aligned} \end{aligned}$ $\mathrm{Idc}=\mathrm{Im} /$ п Irms= Im/2 Assume $\mathrm{R}_{\mathrm{L}=10 \mathrm{~K} \Omega \text { - (Note }- \text { Students may assume any value and attempt to solve, can }}$ be considered)	$\mathrm{Vdc}=$ 1 Mark PIV = 1 Mark

	$\begin{aligned} \mathrm{Im} & =\mathrm{Vm} / \mathrm{R}_{\mathrm{L}} \\ & =32.52 / 10^{*} 1000 \\ & =\mathbf{3 . 2 5 m A} \end{aligned}$$\begin{aligned} \text { Idc } & =\operatorname{Im} / \pi \\ & =3.25^{*} 10^{-3} / \pi \\ & =\mathbf{1 . 0 3} \mathbf{~ m A} \end{aligned}$$\begin{aligned} \text { Irms } & =\operatorname{Im} / 2 \\ & =3.25^{*} 10^{-3} / 2 \\ & =\mathbf{1 . 6 2} \mathbf{~ m A} \end{aligned}$			Idc $=1$ Mark Irms = 1mark
b)	State the values of following parameters with reference to full wave rectifier: (i) Ripple factore (ii) Efficiency (iii) TUF (iv) \mathbf{P} / V			4M
Ans:	(i) Ripple factor -48% (ii) Efficiency -81.2% (iii) TUF -69.3 or 81.2 (iv) PIV- Vm			1 mark each parameter
c) Ans:				
	Compare EMOSFET \& DMOSFET.			Any 4 points - 1mark each
	2.	For n- channel EMOSFET V_{GS} will be only positive.	For an n-channel DMOSFET, the V_{GS} can be negative for depletion mode \& positive for Enhancement mode	
	3	For an n-channel EMOSFET ID increases as V_{GS} becomes more and more positive	For an n-channel DMOSFET ID decreased as V_{GS} becomes more and more negative.	
	4	For an n-channel EMOSFET $I_{D}=0$ for $V_{G S}$ $\leq \mathrm{V}_{\mathrm{T}}\left(\mathrm{V}_{\mathrm{GSTh}}\right)$	For an n-channel DMOSFET $\mathrm{I}_{\mathrm{D}}=0$ for $\left\|V_{G S}\right\| \geq V_{P}$	

d)	Determine output voltage V_{0}, load curre zener diode for the circuit shown below.	I_{L}, zener current $I_{z} \&$ power dissipation in	4M
Ans:	i) $\begin{aligned} \mathrm{Vo} & =\mathrm{Vz} \\ & =8 \mathrm{~V} \end{aligned}$ ii) load current I_{L} $\begin{aligned} & \mathrm{I}_{\mathrm{L}=} \mathrm{V}_{\mathrm{o}} / \mathrm{R}_{\mathrm{L}} \\ & =8 /\left(10^{*} 1000\right) \\ & =0.0008 \\ & =\mathbf{0 . 8} \mathbf{~ m A} \end{aligned}$ iii)zener current I_{z} $\begin{aligned} & \text { Vo=Vin-Is.Rs } \\ & \text { Is=(Vin- Vo)/Rs } \\ & =(10-8) / 100 \\ & =2 / 100 \\ & \text { Is }=\mathbf{0 . 0 2 A} \end{aligned}$		$\mathrm{V}_{0}=1 \mathrm{mark}$ $\mathrm{I}_{\mathrm{L}}=1 \mathrm{mark}$ $\mathrm{I}_{\mathrm{z}}=1 \mathrm{mark}$

	Ans:				1 mark each
		Parameters	BJT	FET	
		Symbol			
		Transfer characteristics		OR Non-linear in FET	
		I/P impedance	Low	High	
		Application	Amplifier and Switch	Amplifier and Switch	
	e)	Describe the working of characteristics of zener	diode as a voltage regu	with reverse	
	Ans:	Circuit Description As the zener diode is known as SHUNT REGUL A resistance (Rs) is conne For proper operation, the i Where, $\mathrm{Rz}=$ zener resistance	nected in parallel or shunt OR. in series with the zener dio t voltage(Vs) must be great $\begin{gathered} I s=\frac{V s-V z}{R s} \\ V_{L}=V_{Z}+I_{Z} \cdot R_{Z} \end{gathered}$	L Regulated voltage the load hence it is also to limit current in the circuit. han the zener voltage (Vz).	

$$
\begin{gathered}
I_{L}=\frac{V_{L}}{R_{L}} \\
\text { Is }=\mathrm{Iz}+\mathrm{I}_{\mathrm{L}}
\end{gathered}
$$

WORKING OF ZENER DIODE SHUNT REGULATOR

A] REGULATION BY VARYING INPUT VOLTAGE

This diagram is optional

This diagram is optional

In this method the input voltage is kept constant whereas load resistance R_{L} is varied.

CONDITION 1. WHEN LOAD RESISTANCE IS INCREASED

When load resistance is increased, the lpad, current reduces, due to which the zener

		current I_{Z} increases. Thus the value of input current and voltage drop across series resistance is kept constant. Hence the load voltage remains constant. CONDITION 2. WHEN LOAD RESISTANCE IS REDUCED When load resistance is decreased, the load current increases. This leads to decrease in Iz. Because of this the input current and the voltage drop across series resistance remains constant. Hence the load voltage is also kept constant.	
Q. 5		Attempt any TWO of the following :	12-Total Marks
	a)	With neat circuit diagram and mathematical expressions, explain the self-biasing used in F.E.T.	6M
	Ans:	1. SELF BIASING - In this circuit there is only one drain supply and no gate supply. - The gate terminal is connected through resistor R_{G} to the ground. - The source terminal is connected through resistor Rs to the ground. \{NOTE: In JFET input PN junction between gate \& source is always reverse bias, due to this input resistance of JFET is yery high. Due to this input gate current $\mathrm{I}_{\mathrm{G}}=$ zero. Hence if resistor R_{G} is connected in series with gate terminal, voltage drop across R_{G} is zero as $\left.\mathrm{V}_{\mathrm{RG}}=\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{G}}=0\right\}$ - $\mathrm{V}_{\mathrm{G}}=\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{G}}=0$ - $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{S}}$ $=-\mathrm{V}_{\mathrm{S}}$ APPLY KVL TO INPUT LOOP $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{S}}=0 \\ & \therefore \mathrm{~V}_{\mathrm{GS}}=-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{S}} \end{aligned}$ - $\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left\{1-\frac{V_{G S}}{V_{P}}\right\}^{2} \quad$ Shockley's equation - APPLY KVL TO OUTPUT LOOP $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}}-\mathrm{V}_{\mathrm{DSQ}}-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{S}}=0 \\ & \mathrm{~V}_{\mathrm{DSQ}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}}-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{S}} \end{aligned}$	Circuit Digram:3M Explanation: 1M Mathematic al expression:2 M

	$=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}}\left[\mathrm{R}_{\mathrm{D}}+\mathrm{R}_{\mathrm{S}}\right]$	
b)	Identify the following circuit shown in Fig. No. 1 and draw input and output waveforms. Fig. 1	6M
Ans		Circuit Identification :2M Input, output waveform:4 M
c)	Explain V-I characteristics of zener diode.	6M
Ans:	Forward characteristics of Zener diode: This characteristic is similar to that of an ordinary silicon $\mathrm{P}-\mathrm{N}$ junction diode. This indicates forward current is very small for voltages below knee voltage ($\mathrm{VK}=$	Forward characteristi cs of Zener diode: 2M Reverse characteristi cs of Zener diode: (2M Draw and 2M Description)

		0.7 V) and large for voltages above knee voltage. Reverse characteristics of Zener diode: - Fig above shows the reverse portion of V-I characteristics of the zener diode. - As the reverse voltage $\left(\mathrm{V}_{\mathrm{R}}\right)$ is increased the reverse current $(\mathrm{I} \mathrm{Z})$ remains negligibly small up to the 'Knee' of the curve. - At this point the effect of breakdown process begins. - From the bottom of the knee, the breakdown voltage or Zener voltage $\left(\mathrm{V}_{\mathrm{Z}}\right)$ remains essentially constant. - This ability of a diode is called regulating ability and is an important feature of Zener diode. - Following two points are important from the characteristics of a Zener diode. - There is a minimum value of Zener current called "break over current" designated as I_{ZK} or $\mathrm{I}_{\mathrm{Z}}(\mathrm{min})$ which much be maintained in order to keep the diode in regulation region. There is a maximum value of Zener current designated as I_{ZM} or $\mathrm{I}_{\mathrm{Z}}(\max)$ above which the diode may be damaged.	
Q. 6		Attempt any TWO:	12-Total Marks
	a)	Draw the characteristics of LED and write advantages, disadvantages and application of it. (each two points)	6M
	Ans:	V-I characteristics of LED:	V-I characteristi cs of LED:3M

(ISO/IEC - 27001-2013 Certified)

ADVANTAGES: (Any Two Points)

- Efficiency: LEDs emit more lumens per watt than incandescent light bulbs.
- Color: LEDs can emit light of an intended color. This is more efficient and can lower initial costs.
- Size: LEDs can be very small (smaller than $2 \mathrm{~mm}^{2}$) and are easily attached to printed circuit boards.
- On/Off time: LEDs light up very quickly. LEDs used in communications devices can have even faster response times.
- Dimming: LEDs can very easily be dimmed either by pulse-width modulation or lowering the forward current.
- Cool light: In contrast to most light sources, LEDs radiate very little heat.
- Slow failure: LEDs mostly fail by dimming over time, rather than the abrupt failure of incandescent bulbs.
- Lifetime: LEDs can have a relatively long useful life. product.
- Shock resistance: LEDs, being solid-state components, are difficult to damage with external shock, unlike fluorescent and incandescent bulbs, which are fragile.
- Focus: The solid package of the LED can be designed to focus its light.

Disadvantages (Any Two Points):

- High initial price: LEDs are currently more expensive (price per lumen) on an initial capital cost basis, than most conventional lighting technologies.
- Temperature dependence: LED performance largely depends on the ambient temperature of the operating environment - or "thermal management" properties.
- Voltage sensitivity: LEDs must be supplied with the voltage above the threshold and a current below the rating. Current and lifetime change greatly with a small change in applied voltage.
- Light quality: Most cool-white LEDs have spectra that differ significantly from a black body radiator like the sun or an incandescent light.
- Area light source: Single LEDs do not approximate a point source of light giving a spherical light distribution.
- Efficiency droop: The efficiency of LEDs decreases as the electric current increases. Heating also increases with higher currents which compromise the lifetime of the LED.
- Impact on insects: LEDs are much more attractive to insects.
- Use in winter conditions: Since they do not give off much heat in comparison to traditional electrical lights, LED lights used for traffic control can have snow obscuring them, leading to accidents.

Applications of LED (Any Two Points):

- As a power indicator.
- In seven segment display.
- In the opto-couplers.
- In the infrared remote controls.

Advantages:
1M
(2Points)

Disadvantag es: 1M
(2Points)

Application:
(2Points)

b)	Draw circuit and describe working of full wave rectifier using center tapped transformer with waveforms.	6M
Ans:	Full wave Rectifier with Center tapped transformer(FWR): - In full wave rectification, the rectifier conducts in both the cycles as two diodes are connected. Circuit diagram: - The circuit employs two diodes D1 and D2 as shown. A center tapped secondary winding AB is used with two diodes connected. So that each uses one half cycles of input AC voltage. - Diode D1 utilized the AC voltage appearing across the upper half (OA), while diode D 2 uses the lower half winding (OB). - The voltage V_{S} between the center-tap and either ends of secondary winding is half of the secondary voltage V_{2} i.e $V_{S}=\frac{V_{2}}{2}$ - If the output voltage should be equal to the input voltage, a step up transformer with turns ratio $\frac{N_{2}}{N_{1}}=2$ must be used. Thus the total secondary voltage V_{2} is twice the primary voltage. i.e, $V_{s}=V_{1}=\frac{V_{2}}{2}$ Operation: 1. In positive half cycle (0-П). - The end A of the secondary winding becomes positive and end B negative. - This makes diode D1 forward biased and diode D2 reverse biased. Therefore D1 conducts while D2 does not. - The conventional current flow direction in the upper half winding as shown in the fig above. $\mathrm{A}-\mathrm{D} 1-\mathrm{RL}-\mathrm{O}$ 2. In negative half cycle ($\Pi-2 \Pi)$: - End A of secondary winding becomes negative and end B positive. Therefore diode D2 conducts while diode D1 does not. - The conventional current flow is from as shown by the arrows in the above fig. $\mathrm{B}-\mathrm{D} 2-\mathrm{RL}-\mathrm{O}$ - From fig. current in the load RL is in the same direction for both half-cycles of input AC voltage. Therefore DC is obtained across the load RL.	Circuit Diagram:2 M Description: 2M

		Waveforms: $2 \mathrm{M}$
c)	i) In CE configuration if $\beta=99$ leakage current $I_{C E O}=50 \mu \mathrm{~A}$. If base current is 0.5 mA . Determine I_{C} and I_{E}. ii) Derive relation between $\alpha \& \beta$.	6M
Ans:	i) Given: $\begin{aligned} & \beta=99 \\ & \mathrm{I}_{\mathrm{CEO}}=50 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA},=500 \mu \mathrm{~A} \end{aligned}$ To Find: $\mathrm{I}_{\mathrm{C}} \& \mathrm{I}_{\mathrm{E}}$ Solution: $\mathrm{I}_{\mathrm{C}}=\beta * \mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CEO}}$ Therefore, $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=99 \times 500 \mu \mathrm{~A}+50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=49550 \mu \mathrm{~A} \end{aligned}$ Therefore, $\mathrm{IC}=49.55 \mathrm{~mA}$ $\begin{aligned} & \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}} \\ & \mathrm{I}_{\mathrm{E}}=49.55 \mathrm{~mA}+0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{E}}=50.05 \mathrm{~mA} \\ & \\ & \mathrm{I}_{\mathrm{E}}=50.05 \mathrm{~mA} \end{aligned}$ ii) Relation between $\alpha \& \beta$: We know that; $\begin{equation*} \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}} . \tag{i} \end{equation*}$ Dividing equation (i) by I_{C}. $\mathrm{I}_{\mathrm{E}} / \mathrm{Ic}=\mathrm{I}_{\mathrm{B}} / \mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{C}}$ Therefore $1 / \alpha=1 / \beta+1 \quad\left(\right.$ Since $\alpha=I_{C} / I_{E}, \beta=I_{C} / I_{B}$	To find IC and $\mathrm{IE}_{\mathrm{E}}=$ 1/5marks each Derive relation between α $\boldsymbol{\&} \boldsymbol{\beta}=$ 3marks

Therefore $1 / \alpha=\underline{1+\beta}$
β
Therefore $\alpha=\frac{\beta}{1+\beta}$
$\alpha(1+\beta)=\beta$
$\alpha+\alpha \beta=\beta$
Therefore $\alpha=\beta-\alpha \beta$
Therefore $\alpha=\beta(1-\alpha)$
Therefore $\beta=\frac{\alpha}{1-\alpha}$

